Гидрофизический кавитационный тепловой нагреватель Белашова.

Гидрофизический кавитационный тепловой нагреватель Белашова содержит корпус, устройство подачи исходного материала, устройство отвода отработанного материала, механизм торцевого уплотнения, камеру высокого и низкого давления, сужающее устройство, привод, кавитатор для перемещения жидкости или тонкодисперсных смесей и подвижное или неподвижное устройство предварительного прогревания жидких, проводящих электрический ток химических компонентов. Гидрофизический кавитационный тепловой нагреватель Белашова обладает преимуществами перед существующими устройствами тем, что имеет:
- модульную многофункциональную конструкцию,
- тепловой нагреватель имеет малые габариты и вес,
- тепловой нагреватель имеет, надёжное уплотнение,
- тепловой нагреватель имеет систему подавления шума,
- тепловой нагреватель имеет устройство передачи тепловой энергии.
При исследовании альтернативных источников получения тепловой энергии были проведены научно-исследовательские работы, в результате которых, было выведено двенадцать математических формул для расчёта гидрофизического кавитационного теплового нагревателя, и открыто отношение кинематической вязкости водного потока за единицу времени = 462,127493944895185929545225419... м²/с, при 20°С. и подтверждено, что кинематическая вязкость водного потока зависит не только от температуры, но и химического состава воды.
Для детального понимания процесса кавитации необходимо знать новые законы гидродинамики и новый закон энергии материального тела расположенного в пространстве. Закон энергии гласит, что каждое материальное тело (молекула воды или воздуха), которое будет помещено в разные среды, будет обладать разной энергией. Смотрите законы и механизмы образования планет Солнечной cистемы и Галактик нашей Вселенной. Однако необходимо помнить, чтобы перенести любое материальное тело из одной среды в другую понадобиться работа, которая будет пропорциональна полученной энергии, выделенной из другой среды.
Математически доказано, что при правильном изготовлении гидрофизического кавитационного теплового нагревателя, с учётом потерь на трение смеси воды и воздуха в трубопроводе и учётом потерь силы струи на вихревое сопротивление смеси воды и воздуха в пограничном слое сужающего устройства, к.п.д. теплового нагревателя достигает 56%. В зависимости от количества магнитов и магнитных систем, подвижное или неподвижное устройство предварительного прогревания жидких проводящих электрический ток химических компонентов, которые называются проводниками второго рода, увеличивает к.п.д. теплового нагревателя на 6-10%.
Прогрессивное научно-техническое решение, которое направлено на применение гидрофизического кавитационного теплового нагревателя Белашова для автономных систем теплоснабжения в пожароопасных или загазованных помещениях. Нагревателей малой и средней мощности, для технических целей. В экологии, для утилизации отходов нефтепродуктов и получения из них топочного топлива и так далее…
При изготовлении гидрофизического кавитационного теплового нагревателя, для автономных систем теплоснабжения малой и средней мощности, необходимо учитывать ряд специфических особенностей и множество конструктивных тонкостей. Например, нельзя изготавливать больших ответвлений линий трубопроводов от гидрофизического кавитационного теплового нагревателя, так как происходит неравномерный нагрев смеси воды и воздуха и сильный разогрев локальной области гидрофизического кавитационного теплового нагревателя, где происходит сама кавитация. Нужно изолировать вал асинхронного двигателя от гидрофизического кавитационного теплового нагревателя теплозащитной муфтой, чтобы температура от локальной части кавитатора и сужающего устройства не передавалась асинхронному двигателю и не уменьшала его к.п.д. Нужно учитывать поведение смеси воды и воздуха на всех этапах его перемещения по трубопроводу и гидрофизическому кавитационному тепловому нагревателю. Необходимо знать из какого материала нужно изготовить лопасти кавитатора, вал кавитатора, отверстие сужающего устройства. Необходимо определить срок эксплуатации сужающего устройства, опорных, скользящих и уплотнительных элементов конструкции. Нужно определить время, через которое следует менять сужающее устройство (при изменении кромки сужающего устройства, изменяется и к.п.д. гидрофизического кавитационного теплового нагревателя), так как основная передача накопленной гидравлической энергии в тепловую происходит на кромке срыва между ламинарным течением жидкости при переходе её в турбулентное течение и так далее…
Необходимо подчеркнуть, что самым слабым звеном в конструкции гидрофизического кавитационного теплового нагревателя является:
- центробежный насос, который был изобретён 1890 году, где к.п.д. центробежных насосов составляет от 20 до 75%,
- электрический привод, где номинальный к.п.д. электродвигателей серии АОЛ и АО составляет от 74 до 92%, но такой к.п.д. электрических двигателей не соответствует действительности.
Смотрите второй и третий закон электрических и электротехнических явлений Белашова.
Патент Российской Федерации № 2155805. 
Для производства гидрофизических кавитационных тепловых нагревателей необходимо применять энергосберегающие технологии. Такими свойствами обладают диэлектрические машины Белашова, так как электрические машины, которые изготовлены из железа, в наше время являются отсталыми технологиями, а применяя их вы заранее обрекаете любое новое и прогрессивное техническое решение на неудачу. Смотрите электрические машины Белашова, которые имеют:
- хорошее охлаждение,
- модульную конструкцию,
- высокую степень надежности,
- надежное сопротивление изоляции,
- небольшие габариты и небольшой вес,
- могут работать без съёмного коллектора,
- могут легко регулироваться по току и напряжению,
- могут быть изготовлены от нескольких Вт, до сотен кВт,
- диэлектрический статор не имеет потерь на гистерезис,
- могут иметь порог чувствительности менее одного Вольта,
- могут вращаться со скоростью меньше 1 оборота в минуту,
- диэлектрический статор не имеет потерь на вихревые токи,
- могут автоматически определять э.д.с. поступающего сигнала,
- диэлектрический статор не имеет потерь на реактивное сопротивление якоря,
- могут иметь систему слежения и регулирования, которая способна автоматически изменять параметры машины,
- могут работать от одного или нескольких независимых источников различного напряжения и тока, а в южных странах от энергии солнечных батарей,
- потребитель самостоятельно может комплектовать, из отдельных модулей, любые параметры машины.
В каждом модуле электрической машины можно установить множество рядов систем возбуждения и множество рядов многовитковых обмоток, а также применить магниты с остаточной магнитной индукцией Br= 1,3 Тл и так далее…
Смотрите гидрофизический кавитационный тепловой нагреватель Белашова.
Патент Российской Федерации № 2255658. 
Смотрите научную статью по новым законам и математическим формулам гидродинамики.
Смотрите комментарий для производителей и потребителей гидрофизических кавитационных тепловых нагревателей.
Смотрите комментарий по законам и механизмам образования планет Солнечной системы и галактик нашей Вселенной.
Смотрите математические формулы для расчёта гидрофизического кавитационного теплового нагревателя.
Патент Российской Федерации № 2255658. 
 

Патенты электрических машин Белашова.

Патент Российской Федерации № 2414041.  
 
Патент Российской Федерации № 2394339.  
 
Патент Российской Федерации № 2368996.  
 
Патент Российской Федерации № 2368994.  
 
Патент Российской Федерации № 2320065.  
 
Патент Российской Федерации № 2218651.  
 
Патент Российской Федерации № 2155805.  
 
Патент Российской Федерации № 2130682.  
 
Патент Российской Федерации № 2118036.  
 
Патент Российской Федерации № 2096898.  
 
Патент Российской Федерации № 2045259.  
 
Патент Российской Федерации № 2053296.  
 
Патент Российской Федерации № 2025851.  
 
Патент Российской Федерации № 2000641.  
 
Патент Российской Федерации № 1831551.  
 
Патент Российской Федерации № 1586599.  
 

Открыты новые законы электрических и электротехнических явлений Белашова.

Научные публикации новых законов электрических и электротехнических явлений.

Открыты новые законы электрических явлений, основанные на константе обратной скорости света.

Научные публикации законов электрических явлений, основанных на константе обратной скорости света.
 
Смотрите научную статью объясняющую происхождение эффекта Губера по новым законам электрических явлений основанных на константе обратной скорости света. Научно-практический журнал «Журнал научных и прикладных исследований» № 4 2015 года страница 58. Свидетельство о государственной регистрации ПИ № ФС 55-38591 ISSN 2306-9145.
Смотрите научную статью объясняющую принцип работы двигателя Косырева-Мильроя по новым законам электрических явлений основанных на константе обратной скорости света. Научно-практический журнал «Журнал научных и прикладных исследований» № 4 2015 года страница 85. Свидетельство о государственной регистрации ПИ № ФС 55-38591 ISSN 2306-9145.
Смотрите научную статью доказывающую существование планетарной модели строения атома по новым законам образования планет и Галактик нашей Вселенной. Научно-практический журнал «Журнал научных и прикладных исследований» № 11 2015 года страница 115. Свидетельство о государственной регистрации ПИ № ФС 55-38591 ISSN 2306-9145.
 
◄|| Главная ||►◄|| Полная версия страницы ||►